Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
2.
EBioMedicine ; 74: 103729, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1555409

ABSTRACT

BACKGROUND: As vaccines against SARS-CoV-2 are now being rolled out, a better understanding of immunity to the virus, whether from infection, or passive or active immunisation, and the durability of this protection is required. This will benefit from the ability to measure antibody-based protection to SARS-CoV-2, ideally with rapid turnaround and without the need for laboratory-based testing. METHODS: We have developed a lateral flow POC test that can measure levels of RBD-ACE2 neutralising antibody (NAb) from whole blood, with a result that can be determined by eye or quantitatively on a small instrument. We compared our lateral flow test with the gold-standard microneutralisation assay, using samples from convalescent and vaccinated donors, as well as immunised macaques. FINDINGS: We show a high correlation between our lateral flow test with conventional neutralisation and that this test is applicable with animal samples. We also show that this assay is readily adaptable to test for protection to newly emerging SARS-CoV-2 variants, including the beta variant which revealed a marked reduction in NAb activity. Lastly, using a cohort of vaccinated humans, we demonstrate that our whole-blood test correlates closely with microneutralisation assay data (specificity 100% and sensitivity 96% at a microneutralisation cutoff of 1:40) and that fingerprick whole blood samples are sufficient for this test. INTERPRETATION: Taken together, the COVID-19 NAb-testTM device described here provides a rapid readout of NAb based protection to SARS-CoV-2 at the point of care. FUNDING: Support was received from the Victorian Operational Infrastructure Support Program and the Australian Government Department of Health. This work was supported by grants from the Department of Health and Human Services of the Victorian State Government; the ARC (CE140100011, CE140100036), the NHMRC (1113293, 2002317 and 1116530), and Medical Research Future Fund Awards (2005544, 2002073, 2002132). Individual researchers were supported by an NHMRC Emerging Leadership Level 1 Investigator Grants (1194036), NHMRC APPRISE Research Fellowship (1116530), NHMRC Leadership Investigator Grant (1173871), NHMRC Principal Research Fellowship (1137285), NHMRC Investigator Grants (1177174 and 1174555) and NHMRC Senior Principal Research Fellowships (1117766 and 1136322). Grateful support was also received from the A2 Milk Company and the Jack Ma Foundation.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/immunology , Point-of-Care Systems , SARS-CoV-2/immunology , Animals , Australia , COVID-19 Vaccines/immunology , Humans , Macaca/immunology , Neutralization Tests , Vaccination
3.
Front Sociol ; 6: 618210, 2021.
Article in English | MEDLINE | ID: covidwho-1190354

ABSTRACT

Birth-related decisions principally center on safety; giving birth during a pandemic brings safety challenges to a new level, especially when choosing the birth setting. Amid the COVID-19 crisis, the concurrent work furloughs, business failures, and mounting public and private debt have made prudent expenditures an inescapable second concern. This article examines the intersections of safety, economic efficiency, insurance, liability and birthing persons' needs that have become critical as the pandemic has ravaged bodies and economies around the world. Those interests, and the challenges and solutions discussed in this article, remain important even in less troubled times. Our economic analysis suggests that having an additional 10% of deliveries take place in private homes or freestanding birth centers could save almost $11 billion per year in the United States without compromising safety.

SELECTION OF CITATIONS
SEARCH DETAIL